Q-1.
If for any moderately asymmetrical distribution mode =15, and mean= 10.5 then find median?
If for any moderately asymmetrical distribution mode =15, and mean= 10.5 then find median?
Answer 1:
Mode =3Median-2
Mean
3Median=Mode+2Mean
3Median=15+2(10.5)
3Median =15+21
3Median=36
Median=36/3
Median =12
3Median=Mode+2Mean
3Median=15+2(10.5)
3Median =15+21
3Median=36
Median=36/3
Median =12
Answer 2:
Height
|
Frequency
|
Class Boundaries
|
Cumulative Frequency
|
60-62
|
5
|
59.5-62.5
|
5
|
63-65
|
18
|
62.5-65.5
|
23
|
66-68
|
42
|
65.5-68.5
|
65
|
69-71
|
27
|
68.5-71.5
|
92
|
72-74
|
8
|
71.5-74.5
|
100
|
Total
|
100
|
median = l+h/f (n/2-c)
=n/2
=100/2=50
median= 65.5+3/42(50-23)
median=
67.43
H.M
Height
|
Frequency
|
X
|
F*(1/X)
|
60-62
|
5
|
61
|
0.08
|
63-65
|
18
|
64
|
0.28
|
66-68
|
42
|
67
|
0.63
|
79-71
|
27
|
70
|
0.39
|
72-74
|
8
|
73
|
0.11
|
Total
|
100
|
1.49
|
H.M = n/ Σ f(1/x)
H.M= 100/1.49
H.M=
67.11
simple use the following equation to solve the question 1
ReplyDeleteMode = 3 Median – 2 Mean